Rol Fisiopatológico del estrés oxidativo y la inflamación en la injuria renal aguda asociada a sepsis

Autores/as

  • S Vera Universidad de Chile
  • R Vergara Universidad de Chile
  • M Galleguillos Universidad de Chile
  • C Céspedes Universidad de Chile

Resumen

La sepsis es la primera causa de morbilidad y mortalidad en las unidades de cuidado crítico. Ésta surge como una respuesta inflamatoria severa y descontrolada contra un patógeno, en donde múltiples agentes inmunomoduladores son liberados desde una fuente primaria de infección y puede causar disfunción orgánica a distancia. La disfunción renal está presente en aproximadamente el 25 a 35% de los pacientes en unidades de cuidado intensivo de adultos, contribuyendo como factor de riesgo independiente para mortalidad. La injuria renal aguda asociada a sepsis se ha relacionado a mayores tasas de morbilidad y mortalidad, estadía hospitalaria prolongada y mayores costos asociados a cuidados de salud. Sin embargo, a pesar de los avances en investigación clínica, las terapias de reemplazo renal, y todos los tratamientos farmacológicos disponibles actualmente, la mortalidad permanece inaceptablemente elevada. Por lo tanto, los esfuerzos están enfocados en mejorar la comprensión de los mecanismos fisiopatológicos subyacentes a esta condición. Particularmente relevante es el rol de la inflamación sistémica y la alteración del estado oxidativo secundaria, los cuales determinan alteraciones microcirculatorias, disfunción celular y finalmente, falla orgánica. Así, mejorar el conocimiento acerca de esta condición patológica puede ofrecer nuevos acercamientos orientados al desarrollo de biomarcadores adecuados y nuevas intervenciones terapéuticas que puedan mejorar los outcomes en este grupo de pacientes.

Palabras clave:

Sepsis, Shock séptico, Injuria Renal Aguda, Estrés oxidativo, Inflamación

Referencias

Singer M, Deutschman CS, Seymour C, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-810. doi:10.1001/jama.2016.0287.

Inkier L, Fan L, Levey A. Assessment of renal function. En: Johnson R, Feehally J, Floege J, editores. Comprehensive clinical neprhology. Filadelfia: Elsevier Saunders; 2014. p. 30 – 38.

Víctor V, Espulgues J, Hernández-Mijares A, Rocha M. Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets 2009; 9:376–389.

Von Dessauer B, Bongain J, Molina V, Quilodrán J, Castillo R, Rodrigo R. Oxidative stress as a novel target in pediatric sepsis management. J Crit Care. 2011; 26:103.e1–7.

Romanovsky A, Morgan C, Bagshaw SM. Pathophysiology and management of septic acute kidney injury. Pediatr Nephrol. 2014; 29(1):1-12.

Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med 2004; 351:159–169.

White LE, Chaudhary R, Moore LJ, Moore FA, Hassoun HT. Surgical sepsis and organ crosstalk: the role

of the kidney. Journal of surgical research 2011; 167:306–315.

Chou YH, Huang TM, Wu VC, Wang CY, Shiao CC, Lai CF, et al; NSARF Study Group. Impact of timing of renal replacement therapy initiation on outcome of septic acute kidney injury. Crit Care 2011; 15:R134.

Saa D, Rodrigo R. Pathophysiology of Multiple Organ Dysfunction Syndrome in sepsis. In: Rodrigo R, von Dessauer B, eds. Oxidative stress and the critically ill patient. Nova Science Publishers, 2013: in press.

Group KDIGO (KDIGO) AKIW. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney int., Suppl. 2012; 2:1–138.

Russell J. Management of sepsis. N Engl J Med 2006; 355:1699–1713.

Shiva Birdi, M. D. and Popovich, M. J. "29. Systemic Inflammatory Response Syndrome (SIRS), Sepsis

and Multiple Organ Dysfunction Syndrome (MODS). General ICU To General ICU Topics, 2013, p. 156.

Victor VM., Rocha M, Esplugues JV. Role of free radicals in sepsis: antioxidant therapy. Current pharmaceutical design, 2005, vol. 11, no 24, p. 3141-3158.

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22:240–273.

Piccinini A, Midwood K. DAMPening inflammation by modulating TLR signalling. Mediators of Inflammation 2010; 2010.

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39:44–84.

Toro J, Rodrigo R. Oxidative stress: basic overview. In: Rodrigo R, ed. Oxidative stress and antioxidants: their role in human disease. Nova Science Publishers, 2009: 1–24.

Zapelini PH, Rezin GT, Cardoso MR, Ritter C, Klamt F, Moreira JC, et al. Antioxidant treatment reverses mitochondrial dysfunction in a sepsis animal model. Mitochondrion 2008; 8:211–218.

Tyml K, Li F, Wilson JX. Septic impairment of capillary blood flow requires NADPH oxidase but not NOS and is rapidly reversed by ascorbate through an eNOS-dependent mechanism. Crit Care Med 2008; 36:2355–2362.

Pathak E, MacMillan-Crow LA, Mayeux PR. Role of mitochondrial oxidants in an in vitro model of sepsis-induced renal injury. J Pharmacol Exp Ther 2012; 340:192–201.

Wheeler DS, Devarajan P, Ma Q, Harmon K, Wong HR. Serum Neutrophil Gelatinase-associated Lipocalin (NGAL) as a Marker of Acute Kidney Injury in Critically Ill Children with Septic Shock. Crit Care Med 2009; 36:1297–1303.

Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11:R31.

Kalakeche R, Hato T, Rhodes G, Dunn KW, El-Achkar TM, Plotkin Z, et al. Endotoxin uptake by S1 proximal tubular segment causes oxidative stress in the downstream S2 segment. J Am Soc Nephrol 2011; 22:1505–1516.

Dear JW, Yasuda H, Hu X, Hieny S, Yuen PS, Hewitt SM, Sher A, Star RA. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney int 2006; 69:832–836.

Langenberg C, Bagshaw SM, May CN, Bellomo R. The histopathology of septic acute kidney injury: a systematic review. Critical Care 2008; 12:R38.

Cardinal-Fernández P, Ferruelo A, El-Assar M, Santiago C, Gómez-Gallego F, Martín-Pellicer A, et al. Genetic predisposition to acute kidney injury induced by severe sepsis. J Crit Care. 2013;28(4):365-370.

Cardinal-Fernández P, Ferruelo A, Martín-Pellicer A, Nin N, Esteban A, Lorente JA. [Genetic determinants of acute renal damage risk and prognosis: a systematic review]. Medicina Intensiva 2012; 36:626–633.

Regueira T, Andresen M, Mercado M, Downey P. Physiopathology of acute renal failure during sepsis. Med Intensiva 2011; 35:424–432.

Heyman SN, Evans RG, Rosen S, Rosenberger C. Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrol Dial Transplant 2012; 27:1721–1728.

Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A, Zsengeller ZK, Akhavan-Sharif MR, Khankin EV, Saintgeniez M, David S, Burstein D, Karumanchi SA, Stillman IE, Arany Z, Parikh SM. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest 2011; 121:4003–4014.

Xu, C., Chang, A., Hack, B. K., Eadon, M. T., Alper, S. L. and Cunningham, P. N. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney international, 2014, vol. 85, no 1, p. 72-81.

Himmelfarb J, McMonagle E, Freedman S, Klenzak J, McMenamin E, Le P, et al. The PICARD Group. Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 2004; 15:2449–2456.

Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 2003; 299:896–899.

Heemskerk S, Pickkers P, Bouw MP, Draisma A, van der Hoeven JG, Peters WH, et al. Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury. Clin J Am Soc Nephrol 2006; 1:853–862.

Radi, Rafael. Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences, 2004, vol. 101, no 12, p. 4003-4008.

Galley, H. F. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107(1):57-64.

Andresen M, Regueira T, Bruhn A, Perez D, Strobel P, Dougnac A, et al. Lipoperoxidation and protein

oxidative damage exhibit different kinetics during septic shock. Mediators of Inflammation 2008; :1–8.

Saa D, Standage SW, Wong HR. Biomarkers for pediatric sepsis and septic shock. Expert Rev Anti Infect Ther 2011; 9:71–79.

Tsalik EL, Jaggers LB, Glickman SW, Langley RJ, van Velkinburgh JC, Park LP, et al. Discriminative Value of Inflammatory Biomarkers for Suspected Sepsis. J Emerg Med. 2012;43(1):97-106.

Kaplan J, Wong H. Biomarker discovery and development in pediatric critical care medicine. Pediatr Crit Care Med 2011; 12:165–173.

Becker, K. L., Snider, R., & Nylen, E. S. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. British journal of pharmacology, 2010, vol. 159, no 2, p. 253-264.

Hoeboer SH, Alberts E, Van den Hul I, Tacx AN, Debets-Ossenkopp YJ, Groeneveld a BJ. Old and new biomarkers for predicting high and low risk microbial infection in critically ill patients with new onset fever: A case for procalcitonin. J Infect 2012; 64:484–493.

Nie X, Wu B, He Y, Huang X, Dai Z, Miao Q, et al. Serum procalcitonin predicts development of acute kidney injury in patients with suspected infection. Clin Chem Lab Med 2013; :1–7.

Bernal ME, Varon J, Acosta P, Montagnier L. Oxidative stress in critical care medicine. Int J Clin Pract. 2010; 64:1480–1488.

Ware L, Fessel J, May A, Roberts L. Plasma biomarkers of oxidant stress and development of organ failure in severe sepsis. Shock 2011; 36:12–17.

Motoyama T, Okamoto K, Kukita I, Hamaguchi M, Kinoshita Y, Ogawa H. Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit Care Med. 2003; 31:1048–1052.

Lemineur T, Deby-Dupont G, Preiser, JC. Biomarkers of oxidative stress in critically ill patients: what should be measured, when and how?. Current Opinion in Clinical Nutrition & Metabolic Care, 2006, vol. 9, no 6, p. 704-710.

Guerreiro MO, Petronilho F, Andrades M, Constantino L, Mina FG, Moreira JC, et al. Plasma superoxide dismutase activity and mortality in septic patients. J Trauma. 2010; 69:E102–106.

Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 2011; 57:1752–1761.

Haase M, Bellomo R, Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol 2010; 55:2024– 2033.

Katagiri D, Doi K, Matsubara T, Negishi K, Hamasaki Y, Nakamura K, et al. New biomarker panel of plasma neutrophil gelatinase-associated lipocalin and endotoxin activity assay for detecting sepsis in acute kidney injury. J Crit Care. 2013;28(5):564-570.

Aydoğdu M, Gürsel G, Sancak B, Yeni S, Sarı G, Taşyürek S, Türk M, et al. The use of plasma and urine neutrophil gelatinase associated lipocalin (NGAL) and Cystatin C in early diagnosis of septic acute kidney injury in critically ill patients. Dis Markers 2013; 34:237–246