El tratamiento crónico con vino tinto disminuye el daño renal por rabdomiólisis

Autores/as

  • Rodrigo Castillo P. Universidad de Chile
  • Matías House S. Universidad de Chile
  • Rodrigo Carrasco L. Universidad de Chile
  • Yalda Lucero A. Universidad de Chile
  • Dr. Ramón Rodrigo S. Químico Farmacéutico. Profesor Asociado ICBM, Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile.

Resumen

Antecedentes: La falla renal mioglobinúrica se asocia a estrés oxidativo, lo que podría atenuarse por ingesta de vino.

Métodos: Ratas recibieron vino tinto por 10 semanas, los controles sólo bebieron agua. La rabdomiólisis fue causada por inyección intramuscular de glicerol al 50% (10 ml/Kg). Se evaluó la capacidad antioxidante del plasma (FRAP, ferric reducing ability of plasma), creatininemia y nitrógeno ureico (BUN) y estrés oxidativo en riñón (lipoperoxidación, carbonilación de proteínas y actividad de enzimas antioxidantes).

Resultados: En el grupo control, la rabdomiólisis aumentó la lipoperoxidación, carbonilación de proteínas, creatinina y BUN. Estos efectos fueron atenuados por vino tinto, que elevó el FRAP en condiciones basales. Después de la inyección de glicerol, las actividades de catalasa y glutatión peroxidasa fueron significativamente mayores que los controles inyectados con glicerol.

Conclusiones: El vino tinto protege al riñón contra el daño oxidativo mioglobinúrico aumentando el FRAP y la actividad de enzimas antioxidantes renales. 

Palabras clave:

rabdomiólisis, estrés oxidativo, riñón, vino, antioxidantes

Referencias

(1) Slater MS, and Mullins RJ. Rhabdomyolysis and myoglobinuric renal failure in trauma and surgical patients. A review. J Am Coll Surg 1998; 186: 693-716.

(2) Vanholder R, Sever MS, Erek E, and Lameire N. Rhabdomyolysis. J Am Soc Nephrol 2000; 11: 1553-1561.

(3) Zager RA. Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab Invest 1989; 60: 619-629.

(4) Moore KP, Holt SG, Patel RP, Svistunenko DA, Zackert W, Goodier D, et al. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem 1998; 273: 31731-31737.

(5) Jacob RA, and Burri BJ. Oxidative damage and defense. Am J Clin Nutr 1996; 63: 9855-990S.

(6) Giugliano D. Dietary antioxidants for cardiovascular prevention. Nutr Metab Cardiovasc Dis 2000; 10: 38-44.

(7) Rodrigo R y Rivera G. Renal damage mediated by oxidative stress: A hypothesis of protective effects of red wine. Free Rad Biol Med 2002; 33: 409-422.

(8) McDonal’D MS, Hughes M, Burns J, Lean MEJ, Matthews D, and Crozie A. Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J Agric Food Chem 1998; 46: 368-375.

(9) Pietta P, Simonetti P, Gardana C, Brusamolino A, Morazzoni P, and Bombardelli E. Relationship between rate and extent of cathechin absorption and plasma antioxidant status. Biochem Mol Biol Int 1998; 46: 895-903.

(10) Giovannini L, Migliori M, Longoni BM, Das DK, Bertelli AA, Panichi V, et al. Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharmacol 2001; 37: 262-270.

(11) Shoskes DA. (1998). Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 1998; 66: 147-152.

(12) Fernández V, and Videla LA. Effect of acute and chronic ethanol ingestion on the content of reduced glutathione of various tissues of the rat. Experientia 1981; 37: 392-394.

(13) Kera Y, Ohbora Y, and Komura S. The metabolism of acetaldehyde and not acetaldehyde itself is responsible for in vivo ethanol-induced lipid peroxidation in rats. Biochem Pharmacol 1988; 37: 3633-3638.

(14) Rodrigo R, Novoa E, and Granata P. Effects of chronic ethanol consumption on renal clearance of electrolytes in the rat. Med Sci Res 1993; 21: 47-49.

(15) Orellana M, Valdés E, Fernández J, and Rodrigo R. Effects of chronic ethanol consumption on extramitochondrial fatty acid oxidation and ethanol metabolism by rat kidney. Gen Pharmacol 1998; 30: 719-723.

(16) Dreosti IE, Manuel SJ, and Buckley RA. Superoxide dismutase (EC 1.15.1.1), manganese and the effect of ethanol in adult and foetal rats. Br J Nutr 1998; 48: 205-210.

(17) Scott RR, Reddy KS, Husain K, Schlorff EC, Rybak LP, and Somani SM. Dose response of ethanol on antioxidant defense system of liver, lung, and kidney in the rat. Pathophysiology 2000; 7: 25-32.

(18) Araya J, Rodrigo R, Orellana M, and Rivera G. Red wine raises plasma HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes. Br J Nutr 2001; 86: 189-195.

(19) Benzie IFF, and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal Biochem 1996; 239: 70-76.

(20) Nebot C, Moutet M, Huet P, Xu JZ, Yadan JC, and Chaudiere J. Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem 1993; 214: 442-451.

(21) Aebi H. CATALASE. In Methods in Enzymatic Analysis. (H.U. Bergmeyer Ed.). New York: Ed. Academic Press 1974; 673-678.

(22) Flohe L, and Gunzler WA. Assays of glutathione peroxidase. In: Methods in Enzymology, (S.P. Colowic and N.O. Kaplan Eds.). New York: Ed Academic Press. 1984; 105: 114-121.

(23) Ohkawa H, Ohishi N, and Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal 1979; 95: 351-358.

(24) Paller MS. Hemoglobin and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol. 1988; 255: F539-F544.

(25) Zager RA, Burkhart K. Mioglobin in proximal human kidney cells: roles of Fe++, Ca+, H202, a mitocondrial electron transport. Kidney Int. 1997; 51: 728-738.

(26) Steiner A, Middleton S. Circulación perisférica. Humana. Aparato Santiago: Circulatorio. Editorial Fisiología Universitaria, 1983; 91-94.

(27) Rodrigo R, Orellana M, Araya J, Bosco C. Rat kidney antioxidant response to long-term exposure to flavonol rich red wine. Life Sci. 2002. En prensa.

(28) Kerry NL, Abbey M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 1997; 135: 93-102.

(29) Durak I, Cimen MY, Buyukkocak S, Cimen MY, Kacmaz M, Omeroglu E, Omeroglu E, Ozturk HS. The effect of red wine on blood antioxidant potential. Curr Med Res Opin 1999; 15: 208- 213.

(30) Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, et al. Protection against damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelatin activity. Febs Lett 1997; 416: 123-129.

(31) Duthie GG, Pedersen MW, Gardner PT, Morrice PC, Jenkinson AM, McPhail DB, Steele GM. The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur J Clin Nutr 1998; 52: 733-736.